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Abstract. In this paper we present several examples of order due to disorder phenomena
and mainly focus on the Heisenberg antiferromagnet with nearest neighbour interactions on the
Husimi cactus, a system which locally has the same topology as the Kedgttine. This system

has a huge classical degeneracy corresponding to an extensive number of degrees of freedom.
We show that unlike thermal fluctuations, quantum fluctuations partially lift this degeneracy and
favour a discrete subset of classical ground states. In order to clarify the origin of these effects,
we have set up a general semiclassical analysis of the order from disorder phenomenon and
clearly identified the differences between classical and quantum fluctuations. This semiclassical
approach also enables us to classify various situations where a selection mechanism still occurs.
Moreover, once a discrete set of ground states has been preselected, our analysis suggests that
tunelling processes within this set should be the dominant effect underlying the strange low-
energy spectrum of Kagogrlike lattices.

1. Introduction

Motivated by the search and understanding of new quantum disordered ground states in
magnetic systems, recent years have seen a renewal of interest in the properties of frustrated
Heisenberg antiferromagnetic (HAF) systems with a special attention to their possible
relations with superconductivity. More specifically, a considerable amount of work has been
completed on frustrated systems whose classical ground states exhibit an infinite number of
local continuous degeneracies. Typical examples of such systems are the HAF models on
the Kagong lattice in two dimensions (2D) and the HAF models on the pyrochlore lattice in
three dimensions. The HAF models on the Kagolaittice has been originally inspired by

the structure of the SGO compound [1] but also by the experiments on ¥He layer on
graphite [2—4]. Other compounds whose magnetic ions live on a pyrochlore lattice have also
been experimentaly studied by neutron scattering [5]. From the theoretical point of view, the
ground state of the quantum HAF model on the Kagdattice is believed to be a quantum

spin liquid. This model has been investigated by exact diagonalizations on finite lattices
[6], series expansions [7], Largé-calculations [8] and also with semiclassical approaches
[9-12]. More recently, some theoretical works on the HAF model on the pyrochlore lattice
have pointed out that this model is already disordered at any finite temperature [13] unlike
the classical KagofHAF which chooses coplanar spin configurations at low temperatures.
The low-energy spectrum of the HAF model with séim)n the Kagor# lattice [14] and the
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pyrochlore lattice [15] have been analysed by performing exact diagonalizations on small
clusters. The results are quite fascinating in both cases since there is a singlet—triplet gap
and nevertheless a large singlet degeneracy which increases with the cluster size. It seems
plausible then that the huge classical degeneracy should play a major role in order to explain
these surprising results.

Systems with many degenerate classical ground states were often considered as useful
toy models before studying for instance spin glasses for whioth frustration and
randomness are relevant. It has then been noticed by Villain and co-workers [16], and
also by Shender [17], that switching on any source of fluctuation (typically, either classical
thermal or quantum zero-point fluctuations) has a tendancy to lift the degeneracy between
these classical ground states. Often this mechanism picks ordered ground states since they
exhibit more symmetries and therefore encourage larger fluctuations. This is the so-called
‘order from disorder’ phenomenon. Over the last 10 years, many interesting contributions
have been dedicated to this topic, in the context of the frustrated square lattice [18], the
Kagone lattice [11, 12], and the pyrochlore lattice [13, 15]. A common trend in all these
works is the appearance of at least a partial degeneracy lifting within the ground state
manifold, in the presence of classical thermal or quantum zero-point fluctuations. In most
cases, both types of fluctuations favour the same subset of ground states. This seems a
little surprising, since we shall provide in this paper an explicit example for which they
behave in a qualitatively different way. However, the question of degeneracy lifting is only
one part of the story, since it is mostlylecal analysis in the vicinity of a given ground
state. Maybe more crucial to the physical behaviour isglobal question of whether the
system remains close to any of the favoured ground states or not. This question is closely
connected to the size of energy barriers separating these pre-selected ground states. If
these barriers are too small, either thermal activation or quantum tunnelling may delocalize
the system in phase space, and thus destroy the selection itself. In fact, evidence is now
accumulating to strongly support such a scenario, either for the Kagwrthe pyrochlore
lattices, which exhibit classical and quantum spin liquid phases with apparently no long-
range order. Although this global aspect of the selection mechanism is very interesting, there
are few systems for which a rather complete analytical treatment is available. Therefore,
in spite of the fact that different systems often exhibit different behaviours, we believe that
valuable insight may be gained from simpler models which can be studied more easily than
more realistic geometries.

Among these, the Husimi cactus (see figure 1) has already provided an explicit example
of a system with a continuous manifold of classical ground states where energy barriers are
too low to freeze the system in the vicinity of a given ground state in the classical thermal
case, or to prevent dramatic tunnelling processes irfthe0 case [19]. The relevance of
tunnelling is clearly demonstrated by comparing the relatively small ground-state degeneracy
(for spinS = %) which scales as the number of sites and the huge classical degeneracy: the
number of coplanar spin ground states is for instance growing exponentially with the number
of sites. The question we address here is: tunnelling is betwdgch classical ground
states? More precisely: does the quantum zero-point energy depend on the classical ground
state? We have found that unlike classical thermal fluctuations for which all classical ground
states on the Husimi cactus are equivalent, quantum fluctuations do favour the discrete subset
of coplanar classical ground states. We believe it is one of the clearest examples where
thermal and quantum fluctuations behave in a qualitatively different way, already at the non-
interacting spin-wave level. In order to clarify the origin of this effect, we have set up a
semiclassical analysis of order from disorder. The main idea is simply to calculate the spin-
wave spectrum from the classical equations of motion for spins, since the classical frequency
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1

Figure 1. The four-generation Husimi cactus.

also determines the quantum zero-point energy motion of a harmonic mode. The classical
dynamical approach greatly simplifies for instance the separation between fast oscillations
around a classical ground state and slow drift motions along the classical ground-state
manifold, which are connected to zero modes. It also provides a very simple understanding
for the different nature of classical thermal and quantum zero-point fluctuations. In the
context of the Husimi cactus, the equivalence between all the ground states for thermal
fluctuations is related to the presence of continuous transformations which conserve the
total energy and phase-space volume, and therefore the Gibbs measure. An example of
such a transformation is a rotation of all the spins below a given site on the cactus around
the spin at this given site. However, conservation of the Gibbs measure is not sufficient
to enforce conservation of the zero-point energy motion, since Hamiltonian dynamics also
requires a symplectic structure on phase space (Poisson brackets), which turns out not to be
preserved by the aforementioned transformations. We shall show that the non-conservation
of Poisson brackets under these phase-space transformations is due to the fact that they
cannot be generated (via Poisson brackets) by functions defined on phase space. This
shows that it is rather difficult to preserve quantum mechanically a continuous classical
degeneracy which is not enforced by a symmetry of the Hamiltonian. We expect that only
a discrete residual degeneracy survives after introducing quantum zero-point motion.

We believe this analysis contributes to rule out one possible scenario which might have
been advocated to understand the unusual situation of the%spﬁagom’e lattice. The
generation of very low-energy scales in the singlet sector might have been attributed to very
slow drift motions close to and along the continuous set of classical ground states. Note
that this continuous set isot a smooth manifold for either the Kag@mor the pyrochlore
lattices, since for those the number of zero modes depends on the classical ground state
[11]. Although simple and appealing, this idea does not work for two reasons. The first is
the large gap between the singlet and the spin-one sectors, which shows the impossibility
to construct long-lived wavepackets centred mostly around a single classical ground state.
The other reason is provided by our analysis: because of quantum zero-point fluctuations,
the ground-state continuum turns into a discrete set, so that classical drift motions in the
vicinity of this continuum acquire finite typical frequencies. Therefore, we conclude that a
semiclassical analysis of the energy spectrum on Kagtike lattices (of which the Husimi
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cactus is a simple example) should focus on tunnelling processes within a discrete set of
preselected (via quantum fluctuations) classical ground states. These processes are crucial
to induce the gap in the spin-one sector. The main challenge for the Kalgttice is then

to understand why they lift the degeneracy in the singlet sector so weakly. We have not
addressed this crucial question here, but we have clarified what happens when we try to
guantize a system with a smooth manifold of classical ground states, whose dimension is
larger than the number of independent symmetries of the Hamiltonian. Either tunnelling
plays a minor role, but then the classical slow variables experience an effective energy
landscape which is no longer flat, or tunnelling is the dominant effect, as we believe is the
case for both the Husimi cactus and the Kagolattice.

Our presentation is organized as follows. Section 2 will present very simple examples
with two degrees of freedom and a one-dimensional degenerate ground-state manifold. This
will illustrate how order form disorder works in a classical Hamiltonian system, provided the
fast modes are prepared with a finite value of the corresponding action variable. Section 3
is dedicated to a simple spin chain for special values of coupling parameters which produce
a more symmetrical ground-state manifold (the full sphgfethan one would expect from
the symmetries of the Hamiltonian (rotations around a single axis). Section 4 presents the
main results for the Husimi cactus, and section 5 contains our geometrical interpretation
of the difference between thermal classical and quantum zero-point fluctuations. A brief
conclusion is given in section 6, and several appendices present some technical details that
most readers will prefer to skip.

2. Some simple examples with two degrees of freedom

In this section, we consider simple examples of dynamical systems where the classical
ground-state manifold is one dimensional. This will demonstrate explicitely that classical
dynamics exhibits the phenomenon of order from disorder provided the fast modes are ‘fast
enough’.

2.1. An integrable toy model

Let us consider a dynamical system with two degrees of freedom, with coordinates
(X1, P1, X2, P,) on phase space. He(& 1, P1) denote a slow mode which is continuously
degenerate along the ling{4, 0, 0, 0) in phase space, and,, P,) a fast mode, which
oscillation frequency2 is a smooth function ofX;. We thus introduce the following
Hamiltonian:

H = 1P2+1Q(X)(P} + X3). (2.1)
We note thatP; commutes withH only if Q is a constant. So the classical degeneracy
is not in general due to a symmetry éf. This Hamiltonian is integrable since we
can perform the following canonical transformati@X;, P1, X2, P2) —> (X1, P1, J2, 62),
where X, = /2J,sin6, and P, = /2J,c0s6,. With these new canonical variables,
becomes

H = IPZ+ QX)) (2.2)
The motion of the fast mode is described by

Jo=0 (2.3)

6, = Q(X1). (2.4)
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So, as we expect, the oscillation frequency is controlled by the ‘slow’ varidbleand is
therefore time dependent in general. Here the ac#ipis exactly conserved, which is a
special feature of this model. In generd}, may be approximately conserved with good
accuracy, since it is an adiabatic invariant [20, 21]. However, this requires a good separation
between the slow and the fast timescales. This question will be addressed soon. Turning
now to the ‘slow’ variables, we have

Xi=P (2.5)

dQ

Jo X, (X1). (2.6)

We see that ifJ, is non-vanishing, the slow variables;, P1) acquire a non-trivial
dynamics, with an effective potential given by (X1) = JoQ(X1). Therefore the classical
degeneracy is dynamically lifted, ank; oscillates around the value which minimizes
the fast frequency2(X;). In a semiclassical approach, the fast oscillator is excited with
quantized values forv, = h(n + %), wheren is a non-negative integer. So the effective
potential corresponding to quantum zero-point motion is obtained ffoe % Although

very simple, this model captures the main idea we need throughout the rest of the paper.

Py=—

2.2. A more generic example

The special status of the previous model comes from the fact that action-angle variables
corresponding to the fast motion do not depend on the slow variélilesP;). In quantum
mechanical words, only the frequency of the fast motion depends;pbut the eigenstate
basis of the corresponding harmonic oscillator does not. In such a case, the adiabatic
principle is exact, and eigenstates of the time-dependent problem are given by those of
the time-independent one (up to phase factors). However, in general we expect the local
eigenstate basis to depend on the actual valu& 0f As a result, the classical action is
only approximately conserved, and therefore transitions to excited states may occur for the
fast oscillator, specially if the two frequency scales are not very well separated. We show
here a simple example where the adiabatic principle may break down. We think this is a
very interesting problem in classical mechanics, which deserves further investigation but
this would be beyond the scope of this paper. Here we just provide an illustration that
complicated things may happen. Let us then consider the following Hamiltonian:

H=31P2+iPZ+11+ex)HX3 (2.7

This represents as before a potential landscape similar to a gutter with variable curvature
depending onX;. Assume first thafX; can be frozen. The fast oscillator evolves with a
frequencyQ(X1) = (1+ €X?)Y/2. The corresponding action-angle variabids, 6,) would

now be given by:

2k 7
Xo = (Q(Xﬂ) sinéd, (2.8)
Py = (20,2(X1))*? coshs (2.9)

but now, since the definition ofJy, 62) involves explicitely X3, the corresponding
transformation is no longer canonical. As befdf®? + $Q?(X1)X3 = Q(X1)J2 is the
effective potential of the slow variables, buis is not exactly conserved. As usual, this
effective Hamiltonian is obtained by averaging over one period for the fast variables [20].
To evaluate when the adiabatic approximation makes sense, let us compare the slow and



5860 B Douwgot and P Simon

the fast frequencies. The averaged motion of the slow variables is given by

X,=P, (2.10)
1 (2.11)

€E——=.
(14 X212

For the small oscillations oX;, we find the slow frequency = (J2¢)%? which has to
be much smaller than the minimum value Qf(X;), that is we require/,e < 1. We
have performed a numerical integration of the equations of motion for this model in order
to check the overall picture. The results are summarized in figueds-@]. Figure 14)
represents the deviations from the circular orbits of the slow and fast oscillatersf@:25.
For ¢ = 0.1, the orbits are still quite circular, proving the robustness of the adiabatic
approximation. We clearly see a qualitative change in the dynamiessagcreased with
a breakdown of the adiabatic approximation for larger value) of €. This can be
seen in a more explicit way by plotting directly the variations of the adiabatic invariant
Jo of the fast motion during one quasiperiod of the slow motion. This has been done in
figure 2f) and €). The adiabatic approximation is no longer valid toe= 0.25. It would
be very interesting to identify the underlying mechanism by which this breakdown occurs.
We just mention here that figurel®(and €) suggest that/,; acquires a time dependence
with frequencies which are close to simple harmonics of the ‘fast’ frequency. Therefore, a
perturbative approach might give valuable insights here.

The data support, however, the validity of our picture up to rather large valués of
around 01. We shall now move on to spin systems with many degrees of freedom.

P, = JdQ(X)— J
1 = de1 1) — 2

3. A ferromagnetic chain

3.1. Ground state and dispersion relations in the different phases

In this section we study the spin dynamics of a one-dimensional XXZ chain with an
anisotropic quadratic term. The Hamiltonian reads

H= J(SIS5y+S'Sly+ASIS, )+ ) (552 (3.1)

wheresS; is a three-dimensional vector normalizedstéthe length of the vector is a constant
of motion from a classical and quantum point of view).

The classical phase diagram of this model can be determined easily and has been drawn
on figure 3 (see also [22] for a quantum analysis with= % S = 1). It is composed
of three different phases: the ferromagnetic one, the planar one and the antiferromagnetic
(AF) one. In order to compute the low-energy spectrum in the various phases (af)arge
it is easy to use the Holdstein—Primakoff transformation. Nevertheless, we prefer to work
here with classical spin dynamics At= 0 in order to give a consistent treatment of the
order from disorder phenomenon. This assumes a Spieacts like a rotor which can be
parametrized by a vectd. The evolution of a quantity) (S) is given by

do(S)

K
with {- ..} the Poisson brackets defined as
. d0f 0g
abc c
81 = 95
{f.g}=¢€ 557 357

with €?b¢ the completely antisymmetric tensor. $f is a vector living on a spher§?, the
corresponding classical Poisson brackets are giver{$#y:5°} = €%<S¢. After a standard
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Figure 2. (a) Poincaé sections for the slow and fast motions &= 0.25 with rescaling of the
variables(X2, P»). We begin to see the deviations from the circular orbits signalling violation
of the adiabatic approximation.

guantization process, we would obtain the usual commutation rules for spin operators (see
[23] for a rigorous treatmera la Dirac). The equations of motion then become
as* . 0H
da ¢ as
These equations of motion can also be derived directly from a variational principle, the
latter being more adapted to a direct path integral quantization scheme.

s°. (3.2)
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adiabatic approximation.c] Same ash) but now withe = 0.25. Deviations from adiabatic
motions are stronger.

We are now ready to derive the equations of motion following equation (3.2) for the
Hamiltonian (3.1) in each of the three possible phases.
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Figure 3. Classical phase diagram of the anisotropic Heisenberg spin chain corresponding to
the Hamiltonian (3.1).

In the ferromagnetic ground state, we use the decomposHiioa S7z + S+ (with
(z)? = 1) and obtain the system of equations

ds;t
d—t” =J [(Sjl + S ) AS 2+ ASE_ + 82, )2A S,
D z 1 1y ¢z
(i A8 + (2 A S)S)) (3.3)
ds:
dt" =J(S, 1+ S5 A S, (3.4)

In the vicinity of the ferromagnetic ground state, we can assume
S,(t) = Sz + expitkn — wt)e + O(?)
with € - z = 0. By solving this system, we find the dispersion relation

lwk)| = 2JS |A + ? — cogk)|. (3.5)

We would have obtained the same low-energy spectrum ¢withl) by using, for example,
the Holdstein—Primakoff transformation. When+ ? = —1, the mode at = = becomes

slow and has the expectéd dispersion for a ferromagnetic ground state.
In the planar region, we use the following general decompositiorSfor S° + 8§,
S, = (—1D"Su+ (A(—D)"v + Bz) expitkn — wt) (3.6)

where S = (—1)"S. We have also defined - z = 0, (w)> = 1 andv = z A u. The
equations givingd and B are

. D
—IiwA =2JS |1+ Acogka)+ — | B
|1+ dcosia + 7 | 67

iwB = 2JS(1— cogka))A.
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As |A| <1+ ? in the planar region, we find
) 1/2
w = +2J5(1 — cogka))? <1 + A cogka) + 7) . (3.8)

Two interesting limits can be taken. First, wheén+ ? — —(1)™*, we recover the soft
mode ink?, whereas whem — 9 — (1), we find a linear dispersion aroutd= 0 typical
of an AF ground state.

In the AF area, we can use the decomposition

S, =8+ 8 = (=1)"Sz + [(-1)"e + n]expi(kn — wt) (3.9)

with €.z = -z = 0. By inserting this decomposition in the equation of motion, we obtain
the following dispersion relation:
1/2

D 2
w==42JS |:<A — 7) — cosz(ka)} . (3.10)

In the limit A — ? — 1T we recover the same dispersion relationfas- ? — 1~ found
in the planar region.

3.2. Order by disorder along the transition lines

In the following, we take special interest in the transition lines between these areas. Let
us first analyse the transition between the ferromagnetic and planar ground state. Along
the line separating both regions in the phase diagram, the classical ground stateois
strongly degenerate and can be parametrized by the two spherical &hgtes(d is the

angle betweerS and z). The Hamiltonian (3.1) is invariant by rotation around the

axis and therefore the energy does not depeng.oliVe are here in the unusual situation
where the classical ground-state manifold is invariant underger group 0 (3)) than

the Hamiltonian itself §0(2)). This suggests that quantum fluctuations may reduce this
larger group to the smaller one by selecting one orbit on the classical ground-state manifold
under the smaller group. In our view, this is then a toy model for the order from disorder
phenomenon. We use the decomposition

S, =(-1)"St+Sz=0+0".

The equations of motion reduce to

dot .
- = —Jl(oy 1+ 0op) Ao+ Al + 0, ) Aoy (3.11)
do?

o =l o) Ay (3.12)

where we have used\ + ? 4+ 1 = 0. We are looking for solutions arounaty =
S(cosfz + sinbu) with u - u = 1 andu - z = 0. We therefore writec = oo + §o
wheredo can be parametrized by

8o =[Av + B(coshu — sinfz)]expitkn — wt)
with v = z A u. After standard manipulations we find
wp (k) = £2J S[costka) — 1][1 + (|A| — 1) sir? 9]Y/2 (3.13)

with a dispersion ink? for the slow mode aka = 0. We see that whepA| # 1 there
is a selection mechanism. When| > 1, the spin-wave zero-point motion favours a
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ferromagnetic ground staté & 0) whereas fofA| < 1 the planar ground state is favoured
6=1I).

Tﬁis is the most simple example of an order from disorder phenomenon in so far as
the variabled has no dynamicsS¢ = S cosé is a constant of motion) and more plays the
role of a parameter than a true variable. If we try to classify various possible situations,
we may say here that we have a dynamical system with one conserved quantity and a 2D
ground-state manifold. Furthermore, in the present model, this ground-state manifold is
generated by two symplectic flows which do not commute (for instance the rotations along
z andx). A general model for this is given by the Hamiltonian

N N
H=3%"%"aj(P)P:P; + by (P)X: X; + 2c;;(P) P X;. (3.14)
i22 j>2

For this Hamiltonian P; is conserved and therefore plays the role of&coshe ground-state
manifold is given byP; = X; = 0 for 2 < i < N. This 2D manifold appears as a collection
of one-dimensional (1D) orbits under the symmetry generated’lhyand characterized
precisely by the value of;. Note that the drift motion along these orbits arises from the
excitations of the ‘fast’ variables (8 i < N), as may be seen from the equation giving
the time derivative ofX;. Apart from this drift motion, we can clearly separate the fast
variables from the collective ones £ 1).

Returning to our example, it is straightforward to describe the average drift mgtjon
due to the quantum zero-point motion of the internal (ke 0) modes. The idea is,
as explained before, to view the zero-point energy motion of the internal modes (which
depends o) as an effective potential for the collective variablesand 6. Summing up
the zero-point energy motion obtained from (3.13) ovetkallyields the effective potential

Verr(0) = 2J S,/ 1+ ?sinze. (3.15)

This effective potential folS¢ leads to an average drift for the variable:

b= __Dcoss (3.16)

J1+ 2sirfe

Let us now consider 'the Ising-like cag&| > 1, for which® = 0 is selected. The most
interesting fact is thap still has a non-zero limit whed — 0. Indeed

lim ¢ = D. (3.17)

How shall we interprete this fact? It simply means that the rotor has a residual energy even
when 6 — 0 which corresponds to an easy-axis ferromagnetism. This is nothing but an
anisotropy gap of the system. It is easy to check using Holstein—Primakoff's representation
that the lowest excitation corresponds to a magnon with a Bafor ka = +x. This
simple calculation gives a classical image for a gap which has, however, a purely quantum
origin, through zero-point motion of internal modes. The results (3.13), (3.17) show that
classical Hamiltonian dynamics provides in this case a simple way to understand the low-
lying excitations of the quantum system. This analysis suggests that the critical theory
controlling the behaviour of the ferromagnetic chain can be described by a simple rotor
(independently of the nature of the sp§f). This has been analysed in detail and from a
different point of view in [24].
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We can perfom the same work for the transition line separating the planar ground state
and the AF one. The low-energy spectrum is given by

we (k) = £27 S(ka),/ 1+ ?sinze (3.18)

with % = A — 1. For A =1, the spectrum does not dependénWhenA < 1, we find

that spin waves favour the planar ground state whereaafer 1, the AF ground state is
selected. We have therefore the same kind of order from disorder phenomenon as for the
planar—ferromagnetic transition.

Through this example, we have analysed a simple 1D example of order from disorder.
Similar situations may occur in 2D, frustrated systems such as in/the J, XY or
Heisenberg model on a square lattice [18, 25], where the classical degenegbatyaisand
partially enforced by a true symmetry. This list is obviously not exhaustive and many other
models with frustrating interactions experience this kind of order from disorder. However,
note that the spin chain analysed here is special (and actually simpler) in that the classical
ground-state manifold isot isotropic for the symplectic form which defines the classical
dynamics (see section 5.1)

The Hamiltonian (3.1) has been studied only from the point of view of order from
disorder using a semiclassical analysis. A full quantum analysis demands a more careful
study for instance of tunnelling processes which are sensitive to the actual value of the spin
(integer or half-integer). This is not the purpose of this article. We refer the reader to [22]
for a careful study of the phase diagram and transitions.

4. The Husimi tree

In this section, we will see another non-trivial example of the order from disorder
phenomenon, which we shall study in an extensive way. We consider a pseudolattice
called the Husimi cactus. A four-generation cactus is represented in figure 1. It consists
of a succession of triangles connected only by their vertices. The geometrical dual of the
Husimi cactus is a Cayley tree with constant coordination number. The interesting fact is
that at least locally this pseudolattice looks like the Kagdattice. However, by contrast to

the Kagong lattice, there is no closed loop of connected triangles. Each node of the cactus
has one Heisenberg spin. We consider only nearest neighbour AF interactions, namely the
Hamiltonian reads

H=Y"8S, (4.1)
()]

with §2 = 1. An essential feature of the Husimi cactus is the huge degeneracy of its
classical ground states. This is because minimizing the energy on each triangular plagquette
yields the constraint

> .8 =0 (4.2)

ieA
which does not define a unique ground-state configuration. Indeeed, suppose one spin on
a given plaquette is fixed (sa¥1), then its two neighbours have to live on a half-cone
centred on-S; with an opening angle of. The ground-state manifold of a finite cactus is
then a smooth manifold (i.e. the number of zero modes is independent of the ground-state
configuration). To describe this manifold, let us assume that the top spin is fixed. Then, we
have to choose a rotation angle for the two ‘offspring’ spins around this ancestor. Because
of the hierarchical structure of this lattice, a similar freedom exists at each successive level
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of the hierarchy, until we reach the bottom boundary triangles which we shall call the
leaves. Of course, we have complete freedom to choose the value of the top spin, which
adds two more global zero modes. Fopaeneration cactus with’2— 1 sites, the phase-
space manifold for the Heisenberg model is a product”of-2L spheress?, whereas the
ground-state manifold is isomorphic to the productSsf (choice of the top spin value)

by a torus of dimensiori2»~Y — 1) (i.e. one angle per spin which is not on the bottom
boundary). Hence the ratio

Number of zero modes 2= 11 1
= —_— = P > 1. (43)
Number of degrees of freedom 2(27 — 1) 4

The Husimi cactus with Heisenberg spins is interesting so far as it exhibits a macroscopic
number of zero modes and we expect spin waves to be very soft. Hence, itasprioti
obvious whether order from disorder can occur in such a system. In particular, are coplanar
ground states favoured as in the Heisenberg Kagamtiferromagnets? We emphasize,
however, that the degeneracy lifting mechanism is slightly different for ‘real’ systems such
as the Kagor@a or the pyrochlore lattices since for them, the most relevant effect amounts
to maximizing the number of zero modes [13].

4.1. Thermal fluctuations

As we explained in the introduction, we should distinguish the question of degeneracy
lifting within the ground-state manifold with the more global question of actual selection or
freezing in the vicinity of a particular ground state. Regarding the first question, it is easy
to show that classical thermal fluctuations do not lift any degeneracy. The reason has been
given in the introduction: a rotation of all the spins below a given site on the cactus around
this ancestor spin preserves the phase-space volume element (since the Jacobian matrix is
then triangular and rotations preserve volumes), and also the total energy. Therefore such
transformations preserve the Gibbs measure. Clearly any two ground-state configurations
may be connected by a finite number of such transformations. Our statement then follows
easily. Although very simple, this point has not been noted in [19]. This paper emphasized
the other aspect, namely that energy barriers are too small to allow freezing (for instance
after a quench from high temperatures) in any of the classical ground-state configurations.
Consequently, we do not expect an order from disorder phenomenon induced by thermal
fluctuations in this model. This system is too soft for a selection mechanism to work. Other
situations with extensive entropy and inequivalent ground states—where there is a partial
degeneracy lifting within the ground-state manifold but the global selection mechanism
fails—have been presented in [19]. More recently, the study of the Heisenberg model on
a pyrochlore lattice led to the same conclusions [13, 15]. Here, maximizing the number of
zero modes favours colinear magnetic states, but the effective barriers are too weak for the
system to remain confined in the vicinity of these states.

How similar is the quantum case?

4.2. Quantum fluctuations

4.2.1. General considerationsAs in the previous sections, we wish to understand the
classical spin dynamics & = 0 on the Husimi cactus. Again, the main feature of this
sytem is its huge degeneracy and the fact that these ground states build up a smooth manifold.
If we examine the vicinity of the ground-state manifold, we see essentially two kinds of
motion, those associated with finite frequency oscillations around the chosen ground state
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and those associated with what we call slow drift motions. Typically, this can be described
by an approximate Hamiltonian (defined around the chosen ground state) which takes the
general form [26]:

H=3Pi+-+PH+3 Y wj(PP+0). (4.4)
j=r+s+1
The (P;, 0i), 1 < i < r + s are associated with the slow drift motions a8, Q;),
r+s+1<i < n describe the ‘fast’ oscillators. Note that thB, Q;), r+1<i <r+s
are associated with global symmetries. The equations of motion are

0;=P,  B=0 1<j<r
0;=0  B=0 r+l1<j<r+s (4.5)
sza)ij PjZ—CL)ij r+s+1<j<n.

The degenerate manifold is generated by the vectors associated Qwith ., O, ;
Pr+la cee Pr+s-

Our main aim is to determine if the spectrum depends on the ground state we consider
and more precisely if zero-point fluctations lift at least partially the classical degeneracy.
In order to compute the oscillator spectrum, we will proceed as follows.

(i) First we have to find in phase space the submanifold associated with the drift
motions. They are defined by initial conditions producing a speed parallel to the ground-
state submanifold. For the general Hamiltonian (4.4), the drift space is generated by the
directions associated with?;, 0;) 1 <i <r +s.

(i) Second, the oscillator submanifold is obtained by taking the symplectic orthogonal
of the drift motions submanifold.

By symplectic form, we mean the antisymmetric bilinear form which is defined by
G(X,X') = > ,(PQ: — Q;P)), whereX = (P, Q;,) and X' = (P/, Q)) are any two
vectors in the 2-dimensional classical phase space. The main interest of this symplectic
form is that the Poisson bracket of two functiofisand ¢ defined on phase space is given

by
{f.g}=G(Vf Vg).

This bilinear form is non-degenerate (i.e. it is impossible to find any non-vanishing vector
which is orthogonal to any other vector), so for any linear subsgacthe setD' of all
the vectors orthogonal to any vector ¥ has a dimension dilP+ = 2n — dimD. We
shall call D+ the symplectic orthogonal ab. These notions will be quite useful for the
analysis given in section 5, but it turns out that even for basic computations, they provide
substantial simplification as we shall show shortly.

In the Husimi cactus case, phase space is simgfy", where S? refers to the sphere
and N is the total number of spins. If we consider only one spiand two tangent vectors
dn; and dch, to n, the symplectic forny; is defined by

g(dny, dny) = —n - (dny A dno) (4.6)

It simply corresponds to the area of the parallelogr@mn,, dn,). When we have more
than one site, this definition extends in a straighforward way

g@dn, én) = — Zni - (dn; A dn) 4.7)
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where (dn, n) are tangent vectors in phase space. The equations of motion for this spin
system are

a,ieA® \NjeA?
Here A“ denotes any triangle on the lattice. With the present form, it is easy to derive
the linearized equations of motion in the vicinity of a given ground-state configuration
The spin at site is n; + dn;, wheren; - dn;, = 0. For an equilibrium state, we have
> jeas mj = 0 for any triangleA®. Therefore, the linearized equations read

dSn,-

oy (Z Snj) A (4.9)

a,ieA? NjeA?
Our aim now is to extract the finite-frequency spectrum from these equations. Rather than
remaining abstract, let us apply this strategy to a three-generation cactus.

4.2.2. Spectrum of the three-generation cactudle consider a three-generation cactus
whose sites have been numbered from 1 to 7 (see figure 1 where we have represented a
four-generation cactus which includede the three-generation cactus). At each site, we define
a Heisenberg spim;. Let us derive the most general drift motion around an equilibrium
configurationn;;¢;<7. We have themj + n, +nz = no + ns+ ns = n3 +ng +n7 = 0.
This motion is generated by a global rotation around a veecter global rotation of vector
engy, a partial rotation ofn, andns aroundn, (of anglen), and finally a partial rotation of
ng andny aroundng (of angle¢). We are looking for tangent vectoés:; (n; - Sn; = 0)
producing a motion parallel to the ground-state manifold. Therefore, we have to solve the
system (the arrows on vectors will be omitted in order to lighten expressions)

ny=r Any= (6ny+8ns+ énz) Any

np = (r +€ny) Anp = (8ni+ 8ny + 8nz + dny + dng + éns) A no

n3 = (r + eny1) Anz = (8ny+ ény + dnz + énz + dneg + dny) A ns

nga= (r +eny 4+ nna) Ang = (8ny + dng + dns) A ng (410)

ns = (r + eny 4+ nna) A ns = (Snz + dng + dns) A ns

ne = (r + eny + ¢{n3) Ang = (8nz + dng + ény) A ng

ny = (r +eny+ ¢n3z) Any = (nz + dng + dny) Any.
The fact that we are in the vicinity of an equilibrium state imposesithandng are linearly
independent as well ag andn;. This fact is used in the resolution of the system (4.10)
and we thus find that the submanifold associated with the drift motion is locally defined by

dny+d8n,+8nz3 =0

dnp 4 dng + dns = eng + nno (411)

énz + dne + Sny = eny + {ns.
We call this subspac®;. The case = n = ¢ = 0 corresponds to initial conditions with
a vanishing speed, namely to the tangent space to the degenerate submanifold, which we
shall denote byD,. We now have to take the symplectic orthogonal of this submanifold
D1. More accurately, we are looking for vectarse (D1)* such that

(l) Vi u;-n; = 0

(i) Vén; € Dy Zni - (8n; Auj) =0. (4.12)
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The procedure to construct this submanifold explicitly is not straighforward and is explained
in appendix B. Nevertheless, in order to determine the spectrum, we may work with the
larger submanifold(D,)* which is defined in appendix A. To give some illustration of
what these subspaces mean, let us return to the ‘flat’ canonical phase space used in the
context of the general Hamiltonian (4.4). The drift spdzgeis as we have said generated
by the vectors associated wit®;, Q;) for 1 <i <r+s, and Dll corresponds to the finite
frequency modesP;, Q;), r +s +1 < i < n. The spaceD, is spanned by the vectors
associated withD;, 1<i <r+sandP;, r +1< j <r+s. Its orthogonalD; contains
the direct sum ofD;- and the subspace d, generated by the vectors associated with
1 <i < r. As the equations of motion 4.5 show, is stable for the Hamiltonian flow.
The velocity vanishes everywhere @3 N D,, and the image oD5 for the linear mapping
(P;, 0;) — (P;, Q;) is precisely the subspace associated with the finite frequency modes,
namely D

Consider now a vectar € D5 which can be defined by

Uy = ul; up = uf + ub; uz = ub + us

Ug = uZ; Us = uf—,; Ue = ug; U7 = u 4.13)
with uf + u$§ + u$ =ug+uﬁ+ué=u§+ug+u§=0.
We now compute the flow associated withwhich is naturally defined as
v1 = (U1 +uzx+u3z) Any = (u§+ug)/\n1:vg
v2 = (u1 + Uz + Uz + Uz + ua + us) Any = (u§ + uj + u§) Anz = v + vj
v3= (u1+us +us+usz~+us+u7) Anz= (u‘§+u§+ug)/\n3: vg + vg
Va = (Ua~+ us + uz) Ang=uj Ang= vZ (4.14)

v5=(u4+u5+u2)An5=u‘§An5=v§
ve = (U3 + ue + u7) Ang = uz A ne = vg
v7 = (uz + ue + u7) Any =u5Any =5

where the velocitiesv; = n;) are given by the linearized equations of motion 4.9. By
defining

v = (b +u$) Any v = (ub +u$) Anay v = (u§+ ub) Ang

b b b

vy = u§ Ang Vg =uG Ang Vg = uj Ans (4.15)
Vg = uz Ans vg = U3 A ng v = ug Any

we check thaiD,)* is stable under the Hamiltonian flow. Indeed, we clearly have:
v§ 40§+ v§ = vh + vk 4+l = v§ +v5 4+ 05 = 0.

Moreover, we can prove thate (D;)*, as we discussed using the Hamiltonian (4.4).

To show explicitly this interesting property, we just have to show thigtorthogonal to
any tangent vectorén satisfying (4.11). The demonstration proceeds in a pedestrian way.
The main ingredient involved is th&t(v, 6n) involves only the sums of the field on the
various triangles, which are precisely given by the right-hand side of equations (4.11). A
similar reasoning is detailed at the end of appendix B.

We now compute the frequencies of the oscillators. We therefore consider the square
of the application giving the Hamiltonian flow:

u How v fow —wu. (4.16)
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The application closes because of the stabilityddf under the linearized flow. We obtain

—a)zu‘l’ = (vg +vg) Any= W Ang+ug Ang) Ang

—wzug = (v‘z’ +vg) Anp = (U Ang+ug Anz) Anp (4.17)
—a)zu% = (vlz’ + v§) Ang = (u§ Ang+u§ Anz) Ans

—w?ul = v§ Ang = (U +u$) Ang) Any

—a)zuz =V Ang= ((ug + ug) Ang) Ana (4.18)
—a)zu’g =V5 Ans = ((ug + u3) Anz) Ans

—w?u§ = v§ Ang = ((uh + us) Ang) Ang

—a)zug = V3 Ang = ((ulz’ + u3) Anz) Ang (4.19)

—w2u§ =v3 ANy = ((ug + u5) Ang) Any.
Note that the equations associated with, #4) and (u5, u$) are closed. We therefore have
to solve two systems

A) { _wiug — et (4.20)
—wuy = —uz + (u3.n3)nz + 5u3
® { _wzug = —(uig )+ ((u’f + u3) 2) nz 4.21)
—wu§ = —(uy + uf) + ((uz + ug).n3).ns.
In order to solve the system (A), we introduce the vectet ”Z%;‘ and write
ui = piz+0ozAn, 1<i<3
and

p1+ p2+ p3=0.

We find for system (A) that the possible values érare, 3, 2. We can solve the system
(B) in the same coordinate system and we find the same eigenvalues.

We can thus conclude that the eigenvalues of the massive modes for the three-generation
cactus ares® = 34, w? = 2, »? = 2 and are doubly degenerate.

Moreover, the spectrurdoes notdepend on the classical ground state and the order

from disorder phenomenon does not occur for this system.

4.2.3. Order by disorder in the-generation cactus. We would like to see now if these
results also apply to any finite cactus with generations. The general structure of the
calculations is as outlined in the previous paragraph. We also work within the linear space
D5 whose definition is the natural generalization of equations (4.13). 9ijcés stable

under the linearized flow, we define a linear mappingBf which sends any tangent
vectoru; of Dy into the corresponding velocity;. An explicit calculation of the secular
determinant for thep = 4 cactus is presented in appendix C. The main conclusion is that for

p > 4, the zero-point energy does depend on the classical ground state configuration. An
illustration of this is given in figure 4 where the zero-point energy is plotted along a special
curve on the classical ground-state manifold. This curve corresponds to the ground states
which originate from a coplanar configuration and are then obtained by rotating all the spins
below site 2 (i.e sites 2, 4, 5, 8, 9, 10, 11) by an asg&[0, =] aroundn,. The zero-point
energy is minimal fo® = wk, (k integer) and maximal fof = (k + %)7‘[. Therefore, zero-

point fluctuations favour coplanar states, and induce effective barriers between such states.
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Figure 4. The energy barrier separating two discrete ground states in the four-generation cactus.
Spins below site 2 (i.e. at sites % 8, 9, 10, 11) are rotated around, by an angle, giving a
smooth path on the ground-state manifold. Note that 0 andé = = correspond to coplanar
ground states. The height of this barrier is around 1% of the low-energy excitation which
suggests a quite flat low-energy landscape in the spectrum.

We remark that all the planar ground states are equivalent even after introducing zero-point
fluctuations. This is because the Husimi cactus has a huge space group which preserves
both the Hamiltonian and the symplectic structure. For instance, consider one triangle
a, B,y in the bulk of the cactuse( being the top site of the triangle). If we exchange the
sitesg and y and also all their descendants, it is clear the lattice is preserved. It is also
clear that any coplanar ground state may be mapped into any other by a finite sequence of
such transformations. Now, figure 4 also suggests that these degenerate coplanar states are
connected by rather low effective energy barriers. Indeed, the height of the barrier is about
1% of the low-energy excitation which is very low. We would have thought intuitively to
a much higher barrier since we rotate all spins below site 2. It indicates that the effective
low-energy landscape is rather flat and that tunelling processes will play a very important
role. On intuitive grounds, we expect these effective barriers to refimia as the system
size goes to infinity, since such a rotation around a given ancestor spin inducdsaaily
corrections to the small oscillation matrix (see appendix C.3).

Another feature of the cactus is that this degeneracy lifting mechanism oamalyrin
the bulk of the cactus but not on the leaves. The three-generation cactus appears in fact
as a particular case because it is built only of leaves (the leaves are defined as the bottom
boundary triangles). We have demonstrated these results for the four-generation tree, but
the conclusion still holds for @-generation cactusp(> 4) by a straightforward induction
proof. The special case of leaves is addressed in section 5.3.

This set of results suggests that physical properties of this system will be dominated at
T = 0 by dramatic tunnelling processes within the discrete set of coplanar classical ground
states. This will be the subject of further work [27].

A simpler example in the same class is what is referred to in the literature as the
Delta chain. It consists of a chain of triangles linked by their vertices as shown in
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Figure 5. The so-called Delta chain with five triangles.

figure 5. This system has been much studied and the specific heat was shown to have
a double peak structure as in the Kagoamtiferromagnet [28]. Therefore, it was believed
that an understanding of its properties could shed light on the Kagamiferromagnet.
Theoretical interests on this chain have also been enhanced by its experimental realization
[29]. Many studies have been devoted to its extreme quantum version nameﬂy:fo%
spins [28, 30, 31]. The ground state is exactly known to be a dimer state [32]. The low
lying excitations were found to be kink and antikink-type domain walls in the dimer singlet
ground state [30].

Our semiclassical analysis applies directly to gpen Delta chain, and we find that
coplanar ground states minimize the spin-wave zero-point energy here as well.

5. A geometrical analysis of the spin dynamics on the Husimi cactus

5.1. Properties of the flow associated with rotations around a given spin

Let us consider one spin at a site labeliedThe infinitesimal rotation of angle around

this spin defines a vector field on phase space. More accurately, if the phase space is
(5N (with N the number of spins), a tangent vectar; to the configuratiom; verifies
m;-n; =0 (G e[l,...,N]). If jis a descendant afthenm; = en; A n; elsem; = 0.

We will characterize and analyse the properties of these vector fields in the following.

e The first and main property of these vector fields is that the energy is conserved along
their flow in phase space.

e Secondly, we may wonder if these vector fields can be associated with the symplectic
flow of a function defined in phase space; that would therefore commute with the
Hamiltonian! According to the previous section, we know that the answer to this issue
is negative because a particular order is selected (indeed, if the hypothesis were true, it
would imply that actual symmetry protects these internal rotations and therefore prevents
any selection mechanism from acting). Nevertheless, we now prove it in a direct way. In
a general manner, suppose we have a vector fiélebn a manifold andg;; denotes the
symplectic form in any coordinate system. We assume that

3F such thaty’ = "9, F. (5.1)

This implies thatvi, o; = g;;U’ = 9;F, wherew; is a one-form. We consider the simple
case of two sping; andn, and take the rotation af, aroundn; of anglee. This defines
a vector fieldm,; = 0; my, = eny A ny. If dny and dh, are respectively tangent vectors
to n1 andn, then

- dni 4+ ap - dny = —ny - (dny A my) — ny - (dnp A my)
= —€eny - (dny A (N1 Any)) =nq - dno. (5.2)
This property comes from
a; - dn' = dn'g; U’ = G(dny, dny)
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whereG(.,.) has been defined in (4.6). From (5.2), it appears thdh' is not an exact
differential because it is not closed. Indeed, the equivalent of the rotational is defined by

8,'(1j — 8j0l,' = b[j. (53)
If dn; andén; (i € [1, 2]) are two tangent vectors to the poinf, then
bi;dn'$n! = dnydny — Snadny # 0. (5.4)

We can therefore conclude that those flows associated with internal rotations around a given
spin are not symplectic flows of functions defined on the phase space despite the fact that
they do not change the energy.

e Another interesting property that may be checked concerns the commutativity of the
flows associated with two different rotations. Suppose, we first perform a rotation around a
spini and then a rotation around a spirwhich is a descendant of spin It is nota priori
obvious that the two operations commute, however, we have shown that this is the case.

¢ Finally, we wish to mention another property of vector fields. Let us consider two
internal rotations and their two associated vector fieldSsandV. Supposd/ corresponds
to a rotation of angle around one spim; andV to a rotation of angley around one spin
n;. If i andj are not comparable in the lattice hierarchy tlig@/, V) = 0. however, if;j
is a descendant af thenG(U, V) has no reason to be equal to 0.

Nevertheless, on the ground-state manifold, it is easy to verify that

YU,VV, g\Ground statéU, V) = 0. (5-5)

This follows directly from the fact the ground-state propeyty Si(“), i indicating the three
sites of a given triangle. In more technical words, the submanifold of the ground-state
manifold generated by these internal rotations is isotropic for the symplectic form.

5.2. Vector flow associated with internal rotations and Hamiltonian Flow

In this section, we wish to clarify why the flow associated with these internal rotations does
not in general commute with the Hamiltonian flow (except for the rotations of the leaves
of the Husimi tree). As we shall see, this is closely related to the non-vanishing of the
two-form b;; (5.4).

5.2.1. General considerations.In this section, we derive some general considerations
which will be useful for our problem. We consider a phase space with a symplectic closed
form G (of componentg;;), a HamiltonianA which is invariant under the flow associated
with a vector fieldX. It reads as

LxH=X3H=0 (5.6)

with Lx the Lie derivative in theX-direction. We also defing to be the Hamiltonian
vector field which therefore satisfies

Y =g"9;H. (5.7)
The quantity we are interested in is the Lie bracket:
(X, Y] =X/9;Y —Y/9;X". (5.8)

By using the definitions (5.7), (5.8) and the invariancerbfunder X (5.6), we can easily
prove that

[X, Y] = —{—(3;¢g™) X + g (@ X") + g/ (3; X))} (9 H)
= —a'*o . H (5.9)
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where we have defined* = —(9;¢™) X/ + g" (9; X*) + g/*(9; X").
The relation (5.9) can also be formulated as

[X,Y] = —g'auY* (5.10)
with

aij = gina" gj = —aji = (gi)) X" + g (3, X*) + g1 (3; X). (5.11)
We can therefore conclude that

[X,Y] =0 q;Y/ =0. (5.12)

The two-forma;; plays a crucial role. We first restrict ourselves to the simplest hypothesis
Vi, ja;; = 0. This condition has a simple interpretation in differential geometry and means
that X is a Killing vector field [33]. It means that the symplectic foga is invariant under

the flow associated witlx, i.e.

LxG=0
or in components:
(Begi) X* + i (9 X) + g1 (3: X*) = 0. (5.13)

Thereforea;; = 0 <= LxG = 0. Moreover, ifX is a Killing vector field, it is at least
locally the flow associated with a conserved quaniity33] (a conserved quantity because
the flow of X leavesH invariant.

From these generalities, we can conclude thauticient condition for the flowU
associated with internal rotations to commute with the Hamiltonian flow isthahould
be the flow of a conserved quantity. We have proved in section 5.1, that it cannot be true
for our symplectic form.

Nevertheless, we must not forget that the condition (5.12) is weaker. In the Husimi
cactus, we have;; # 0 as already suggested by equation (5.4) and as will be seen further. A
natural issue occurs, namely can we find a vector fielgaving the Hamiltonian invariant
such thatz;; # 0 buta;; Y/ = 0? Before analysing this question, let us pause to summarize
the important consequences of the equivalences derived above.

The relation (5.12) implies the following statement.

In a system with a huge continuous classical degeneracy, the order from disorder
phenomenon (induced by quantum fluctuations) will in almost cases occur unless these
degeneracies are protected by true symmetries of the HamiltoriNwie that here, order
from disorder refers to degeneracy lifting within the ground-state manifold and not to the
global behaviour of the system.

5.2.2. Application to the Husimi cactusWe now turn back to the question wherg # 0.
Can we find in the Husimi cactus vector fields such that/ = 0? Suppose we consider
the vector fieldX associated with the rotation of anglearoundn; of the vectorsn; (n;
are descendant spins af). The two-forma;; is also given byb; (gjx X*) — 9; (gix X*) which
corresponds to the two-forin; defined in (5.3). Therefore, #; andv; refer to two tangent
vectors to the point:;, then according to relation (5.4),

a(u,v) = U -V — U+ U; (5.14)
j j
jzi

 To show that, we suppos¥’ = g9, F <= & F = g;;X/. By using the Schwartz equalityd; F = 3;9; F and
the Leibnitz rule, we prove the equivalence. Note that this also requireg;thatclosed i.ed; gjx +0; gki +k&ij =
0.
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where the notationj > i means; descendant of. We now consider the one-form
Bi = a;;V’, whereV/ is the Hamiltonian flow at the point; in phase space. For the
Husimi tree, it is defined by

v; = ng An; (5.15)
keN;

where N; means the nearest-neighbours siteg.oConsequently,

Bw) =a(u,v) = Z { Z(nk A nj)}ui — Z(nk ANy - Zu, (5.16)
j=i LkeN; keN; j=i

This summation has absolutely no reason to vanish. We can thus conclude according to
(5.12) that the Hamiltonian flow does not commute with the flow associated with internal
rotations (except the case of the leaves of the Husimi tree as we will see in the next
section). To analyse this phenomenon more precisely, we shall also consider the vicinity of
an equilibrium state, and study the evolution of the small oscillation matrix under the action
of the flow X associated with internal rotations. This has been developed extensively in
appendix C. We only summarize the main results. First, we have recalled in appendix C.1
how the variation of the oscillation matrix under the flowX is connected to the two-form
aij:

(LxA)jj = 0= —ay Ak =0 (5.17)

&~ Vu,v a(u, Av) = 0. (5.18)

It is another way of showing that the low-energy spectrum is invariant with the flo¥ of
when X is a Killing vector field.

We have then applied this general formulation to the Husimi cactus in appendix C.2
and proved explicitly that the oscillation matrix is not invariant under the flow associated
with internal rotations (see equation (C.15)).

And finally, in appendix C.3, we have compared the oscillation matrices for two
configurations connected by an internal rotation and shed light on the general dependence
of the low-energy spectrum with the angle of the rotations.

5.3. Case of the leaves of the Husimi tree

We now treat the problem of the leaves of the tree. We consider ongngah, ny)
with (ny, ny) the two edge spins. We see in appendix A that the degeneracy still holds.
According to our geometrical discussion in section 5.1, this degeneracy must therefore be
associated with a conserved quantity.

For one triangle, the Hamiltonian simply reduces to

H = (ng+ ni + ny)?. (5.19)

This degeneracy still occurs because the quantigy-n,)2 commutes with the Hamiltonian
(under Poisson brackets). Indeed, the symplectic flow associatedmiith n,)? is given

by

d’l’Ll A

—=n n

dx 2/

dn

d_; =Ny AT (5.20)
dn,-

5 =0 ifi &{1,2)
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i Hamiltonian Flow %/

.......... Pmmen
. vl
Rotation (Rotation)
> Figure 6. Schematic representation of the action of the
\I/ H 1 . Fl X linearized Hamiltonian flow and the flow associated with
amuitonian Flow internal rotations.

where is the parameter associated with the transformation. Therefore,

d(ni + no) dH
y =0 and T 0. (5.21)
It is worth noting that such a transformation cannot in general be identified with all the
rotations we may imagine, namely:

—a rotation arounchg;

—a rotation aroundzg excludingny;

—a rotation aroundzg including ng.

Here, n? denotes an equilibrium value, and we assumeis close ton?. The only
exception corresponds 1@, + n,) colinear tong for the first case and tng for the last
two cases.

Furthermore, we can prove explicitly that the order from disorder phenomenon does
not apply for the leaves of the cactus. We will simply check in the following that the flow
associated with the functiofi = (n1 + n,)? commutes with the Hamiltonian flow. If we
replace in figure 6, the applicatioR by f, we have therefore to show (using the same
notation) thatt = .

We consider an infinitesimal transformation associated with the fungtien(n;+n,)?.
Therefore,

(ny;np) — (N1 +enos Ang;no+ eng Ano).

Let us consider a tangent vecton,; n,) t0 (ni; ny) in phase space. The symplectic
transformationf implies that

(M1+min2+mny) — i+ +enaAni+ena Ang+en Anyne
41, +€ng Any+eng An,+ €Ny Any). (5.22)
Therefore
(M1 M2) —> (P13 9P) = (M + €Np A My + €mpy Ang; g+ €ng An, + €y Anp). (5.23)
The Hamiltonian flow in the initial configuration defines thei € {0, 1, 2} as follows
Co=—ngA Mo+ +m+no+n_1+n_]
&1 =—ni A[no+m1+m, (5.24)
& =—-nI Alno+m1+
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where the sites—1) and(—2) are the nearest neighbours of 5@, in the ancestor triangle.
Because ofpq = 1y andy, + ¢, = 1 + n,, We have

Nr =[N0+ n1+ M2 = ¥r = [to+ Y1+ 3]
Therefore, following the notation of figure 6,

Xo = —1Q A [Ny +no +1_1 +1_3]
X1 = —[n? +eng Anil Any (5.25)
X2 = —[n3 +end Angl Any.

By applying the inverse transformation gfto the vectorsy;, we can easily prove that
Vi &= =4 (5.26)

Therefore, the existence of a true symmetry (associated(with-n,)?) leads to the absence

of order from disorder for all the spins belonging to the edge of the Husimi cactus. Note
that it is in complete agreement with the geometric vision of order from disorder developed
throughout this paper.

6. Summary, conclusions and perspectives

Our main conclusions have in fact already been presented in the introduction. The main
result of this work is to show that continuous degeneracies which are not enforced by
continuous symmetries of the Hamiltonian are more fragile quantum mechanically than
under the action of classical thermal fluctuations. This is because classical thermal
fluctuations are not sensitive to the underlying Poisson bracket structure which is of course
crucial for quantization. To put this work in perspective, we give in aetdbb summary

of what we believe is the present status of three closely related systems: the &afgem
pyrochlore lattices and the Husimi cactus. The first line of the table 1 refers to the local
analysis of degeneracy lifting. We have included both thermal and quantum fluctuations.
Note that the degeneracy lifting mechanism is quite different between the ‘real’ lattices and
the Husimi cactus. For the former, optimal states are the ones which maximize the number of
zero modes. This generates a discrete subset of classical ground states (namely the coplanar
states for the Kago#n lattice and the colinear states for the pyrochlore lattice), within
which a finer selection may occur (for instance favouring an ordered state on the &agom
lattice). Note that the zero-mode counting mechanism does not introduce much difference
between classical thermal fluctuations and quantum zero-point fluctuations. However, the
residual finer selection is sensitive to whether the system is classical or quantum mechanical.
This mechanism is of course not available on the Husimi cactus, for which the number of
zero modes is independent of the ground state configuration. The second line of the table
summarizes the global selection effects, namely whether or not the system remains close to
any of the favoured ground states.

Two extensions of this work may be considered. The first would be to set up a similar
semiclassical analysis for systems in which the number of zero modes actually depends on
the ground state configuration. As we have just mentioned, this would be more relevant to
‘real’ systems such as the Kagéror the pyrochlore lattices. The other direction would be
to take advantage of the simpler phase-space structure on the cactus to analyse tunnelling
processes within the discrete set of coplanar ground states. As usual, these effects are
sensitive for instance to the value of the quantum spjB4], and a rich pattern of possible
guantum phases asvaries may occur in such a system. Numerical diagonalizations would
therefore be very instructive, specially if performed for several values of theSspin
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Table 1. Status of the ground states of the classical and quantum Heisenberg model on the
Husimi, Kagon& and pyrochlore lattices with respect to local or global selection phenomena.

Local degeneracy  Global
lifting selection
Classical No No
Husimi cactus this work [19]
Quantum Yes (coplanar) No
Husimi cactus this work [19]
Classical Kagora Coplanar Coplanar states
or ordered [11] [11]
Quantum kagorm@ Ordered No (spin liquid)
[8-12] [14]
Classical Pyrochlore  No No
[13] [13]
Quantum Pyrochlore  ? No (spin liquid)
[13, 15]

Acknowledgments

We would like to thank P Azaria and F Mila for several interesting discussions concerning
this work.

Appendix A. Vectors associated with the spectrum for the three-generation cactus
In this appendix, we are looking for vectats € (D;)* such that:
() Vi
(i)

u,~-n,~=0

Vén; € Dy 3 ni- (i Aup) =0 (A1)

whereD; is defined by (4.11). We first determine the symplectic orthogonal of the subspace
D, defined by the solutions of the homogeneous equations,
dny+dn,+8nz3 =0
ény +6ng+6ns =0
dnz + dneg + dny = 0.

(A.2)

We obviously haveD, ¢ D;. Therefore, the symplectic orthogonal Bf is included in that
of D,. It is easier to work with the submanifol®, since D, is defined by an intersection
of subspaces defined by only one condition:

D§ = {8}1,»/ > ong = o}
ieAd

wherea indicates the ath triangle ande {1, 2, 3}. HenceD, = N,D§. Therefore the
symplectic orthogonal oD, is given by

Dy = PDH*
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since the symplectic form is non-degenerate. This elementary algebra has interesting
consequences because we have only to work on one triangle. Indeed, the first thing to
notice is that a vectat; tangent to an equilibrium configuration and belonging taqD4)*
vanishes on all the sites which do not belong to the triangle labelled By show this, we
remark that any tangent vectén; for which én{ = én§ = 6n§ = 0 belongs toD5. Sou;

has to be orthogonal to all suéh;’s. More precisely, this implie{jigN n;-(6n; Au;) =0

for any set ofén; defined fori ¢ A“ (and of coursesn; - n; = 0). Sinceu; - n; = 0,

this implies thatu; = 0 for anyi ¢ A“. Therefore, we have only to determimg for

i € A“. For this, it is convenient to consider a unit vectémormal to the plane containing

(n{, ng, n§) (note thath=l n{ = 0). The tangent vectodn; andu; to n; restricted to the
plaguetteA“ are then conveniently expressed as

up = piz" + 0, And) (A.3)
Snf = xiz + iz Anf). (A.4)
After an elementary algebra (usimg - n = —% for i # j), we find thatD$ restricted to

A? is the set of tangent vectoss such thath; + A» + A3 = 0 and g = po = pa. This
can be shown to imply that; + p2 + p3 = 0 andoy = 02 = 03. So(Dj)* is the subspace
of D4 of tangent vectors which vanish everywhere but on the triangle To summarize,
and changing notation slightly, for each triangl¢ containing the site&(a), 8(a), y (a),
the tangent vectors? in (D4)* are defined by:

)] Vi u! -n; =0

L

(i) uj =0 Vi # a(a), B(a), y(a) (A.5)
(iii) Uy T Uy T Uy =0
One vector ofDy is written naturally as;; = Y, u¢.

In order to formDj-, we just have to impose the orthogonality to the particular solutions
of the inhomogeneous equations (4.11). The symplectic form of a vedtorDy with a
tangent vectofsn} equals

Glu, én] = — Zan - (uf A dny). (A.6)

According to (A.5),u¢ = 0 if i does not belong to the triangle we can therefore focus on
one particular triangle. With the same notation as before, the contribution of the triangle
a to the symplectic form reads as

Glu®, 8n] = —o (A1 + A2 + A3) + p1us + papt2 + p3pts. (A7)

It is then easy to show that the symplectic fo®fu“, sn] dependsonly on the sum
dni+ éno + dns

Glu®, 8n] = (8n{ + én3 + 8n%) - |:% Z u! Anf + az“i|. (A.8)

The main point is that the surdn; + dnp + dna is just the quantity involved in the
equations (4.11). The dimension ¢D,)* is nine. For(Dy)*, we have three more
conditions. Its dimension is therefore six and we have consequently only three independent
massive modes. More explicitly, for the three-generation cactus (see figure 1 for notation),
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(D1)* is parametrized by

o 0" 0¢
a + a + a — 0
;01 pi /02 (A.9)
P2+ ps+ps =0
p3+pg+p7=0
and they are constrained by
n1-[32" A (phnz + phna+ plns) — 0”2
+n1 - [22° A (pSns + péng + pSn7) — o€z =0
1-[5 p3n3 + pghe + p7n7 ] (A.10)

na-[22° A (o3n2 + phna + pins) —a’z"1 =0
ns-[32° A (p§ns + pgne + p5n7) — 0z = 0.
Appendix B. Vectors associated with the spectrum for the four-generation cactus

We consider the four-generation cactus whose sites and triangles have been labelled
following figure 1. We follow exactly the same construction as for the three-generation

cactus. We thus define vectar$ i € [1,...,15]; « € {a, ..., g} such that
u -n; =0
u?¥ =0 if i is not a site belonging to theth triangle

, (B.1)
> uf =0 i is a site of thexth triangle.

The vectors: define the symplectic orthogonaly of the degenerate submanifaleh. The
subspaceDy is stable under the linearized Hamiltonian flow. This defines veatpras

HES (ub + us) An; j€{1,23}

v = (ub+uf +uf) An; j€{2,4,5

vf:(u%—i—ué—i—ug)/\nj J€1{3.6,7}

vl = (uh) An; j€{4,7,9 (B.2)
v = (ud) An; j €{5,10,11

vl = W§) An j €16,12 13}

As in the previous case, we can show that the vectoese in fact in the submanifold
Di. In order to find the eigenvalues of the flow associated with the vestor® consider

the square of the linearized Hamiltonian flow application. We therefore have the following
system to solve:

— a)zu“; =[(ug+ uﬁ + ug) Anz+ (u+ u'g +uf) Ang] A n; je{1,23) (B.3)
—wzuf = [(ug—i—u%) /\nz—i—uﬁ/\m—l—ué/\ns] AR j€{2,4,5 (B.4)
—wzu; = [(ug—l—u%) Ang~+ug Ane+ u$ An7) An; j€{3,6,7} (B.5)
— w2u7 = [ + ul + ug) Angl A n; j€1{4,8,9 (B.6)
— U = [(u§ + uf + ug) Ans) An; j €{5,10,11 (B.7)
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=[(u§+ u6 +u) Ang] An; je{6,12 13} (B.8)

2u8 = [l + ul +ub) An7] Anj j€{7,14,15}. (B.9)

f=
J
—w M}g
Let us note a rather surprising fact: this system divides into two subsystems of independent
variables. The first subset contains equations (B.4), (B.5) associated with triahjjles (
(c), the second subsystem contains equations (B.3), (B.5)—(B.9). Therefore, these equations
connect next nearest neighbour triangles to each other. This property is clearly general and
does not depend upon the number of generations of the Husimi cactus. This is associated
with the fact that we consider the square of the Hamiltonian flow application.
We first consider the systems of equations (B.4), (B.5) related to trigbgbnd(c). We
can compute the spectrum associated with equations (B.4), (B.5) following the appendix A.
In the coplanar cas&) = 6. = 0), we obtain the following eigenvalues far: 2 2,
% with double degeneracy. Whe#,(6. # 0), we have to compute the eigenvalues of a
4 x 4 matrix. The characteristic polynomial reads

Pw? =X, 0,0 =X*—9x%+28X%— (36+ 8(co§9b +cod )X + 12
— B2 sir? 6, sir? 6, + 2 (sir? ), + sinf 6,) — 2 coss, cosy, sm@b sing, (B.10)

and therefore depends on the ground state!

Note that this result is in apparent contradiction with the case of the three-generation
cactus where the spectrum does not depend on the ground state. In the four-generation
cactus, a selection mechanism holds. It is easy from (B.10) to see that the configuration
minimizing the energy is the planar on & 6. = 0). Under these conditions we find four
eigenvaluesy? = é(l), g(z), ™

Therefore, the spins belonglng to the triangla}, (b), (c) are coplanar. Rather than
solving the heavy system of equations (B.3), (B.6)—(B.9), we can use an extension of the
result proved in the previous appendix. Indeed, if we consider one centred triangle
connected to three free triangles by its vertices. The results of appendix B extend in a
straighforward way, and no selection mechanism is found in this system with nine spins.
Therefore, the three pairs of spins can rotate independently. If we apply this result to
triangles(b), (a), (d), (e) ((b) being the centred triangle), we find that the spi@s9) and
(10, 11) are free to rotate though the spins of triangt¢ are fixed.

Consequently, to summarize, there is no selection mechanism in the leaves of the Husimi
tree!

Appendix C. Vicinity of the equilibrium manifold

C.1. General point of view

We first analyse the vicinity of a submanifoft of equilibrium state of a Hamiltonia.
Therefore £ is defined by

x €€ < H@x) =0 (C.1)
9;H(x) =0.

Let xo € £. We consider a small deviation aroungland thus writex’ = x{ + y’ with
Iyl < llxoll. The equation of motion foy is
dy’

= g (xo+ y)9;H(xo + y). (C.2)
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Using ||y|l < llxoll, this equation becomes

dvt .

= = /(08 H (x0)y* +O(y?). (C3)
Defining A;'.(xo) = g"(x0)d;0x H (x0), the linearized equation of motion arounfl simply
reads

d_yi = A’i(xo)yj. (C.4)

dr J

It is worth noting thatAj. is not in general a tensor. It can easily be checked thatH

does not transform in a covariant way under coordinate transformations. However, if we
restrict ourselves to the submanifald the matrixAj(xo) does define a tensor. Let us now
express the invariance of under the flow associated witki on the submanifold:

LxA =0 BADX" + A9, X" — Afg X" =0 (C.5)
with £ the Lie derivative.
Let us now extend this definition in the vicinity @, thoughA is no longer a tensor.
We therefore defind/; = (akA;i)Xk + AL9; Xk — Ajfakxi.
Using A;, = g"/ 9,0, H, we obtain
M; = (0g™) X" (3,0, H) + g" X" (3,00, H) + " (0, X*) (3,0 H) — g" (3 X") (8,9, H). (C.6)
The invariance ofH under the flow ofX is expressed by x H = 0 or in coordinates
X H = 0= (3;X") (9 H) + X*(3;8 H) = 0 (C.7)
= (9 X ) H) + (3 X*) @3 H) + (3, X") (30 H) + X*(8;88))H = 0. (C.8)
The term(9;3,X*) (8 H) equals zero oi. By injecting (C.8) in (C.6), we find that
M = {(3g")X* — g™ (3 X") — " (3 X)}9,0; H)
= —a" a0 H (C.9)
wherea’ has been introduced in (5.9). The relation (C.9) can be still written as
Mij = —gima™" gug" (9,9, H) = —aikAf- (C.10)

Not surprisingly, we recover the two-forms; corresponding toCxg. We can therefore
conclude that ifX is a Killing vector field, then the matriXd of small oscillations around
an equilibrium configuration is invariant under the flow associated With

C.2. Application to the Husimi cactus

Let » andv be two tangent vectors to an equilibrium configuratiet?} of phase space.
According to (C.10),
M(u,v) = —u'a Av/ = —a(u, Av). (C.11)

We recall how to build the matrixd for the Husimi tree. We considesy; = n,o + v; with
n,; - v; = 0. Therefore,

dn,-
(Av); = F = an ATy
JEN;

= Zn?/\v,- + Zvj /\n?—i—O(vz) (C.12)

JEN; JEN;
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whereN; indicates all the nearest neighboursi ofAt lowest order,

(A’U)i =w; = —'I’l? A < Z v + %Z,“U,‘) (Cl3)

keN;

wherez; is the coordination number of site Using the expression (5.14) afu, w), we
find

a(u, Av) = Z(u,-'wj — ujw;) (C.14)

Jj>i

wherew has been defined in the previous relation. The expression

Sw=-Ynda (Lot dn)
J>i J>i keN;
can be simplified by noticing that
e for k > i andk ¢ N;, the term containingy, vanishes becauz{{:je,\,k n?+%zkn,? =0)
for an equilibrium state;
e for k > i andk € N;, the term containingy is

0 1 0 _ .0
_<an+§zknk>Avk—ni N Vg

JENK

e for k = i, the term containing; is n? A V;.
From these three types of contribution, we infer

a@hAv):7ﬁ-{< > vk+v>/\u&—+n$-{<§:vk+2w)/\§:u4. (C.15)

k>i,keN; keN; Jj>i

Consequently, the two-form is clearly different from zero. This result proves that rotations
of spinsn; aroundn,; (with j descendant of) do not preserve the form of the oscillation
matrix around equilibrium. Note also that it explains why a direct calculation of the low-
energy spectrum with standard methods is difficult to implement. However, this result does
not enable us to show explicitly that the matricﬁjsof two equilibrium configurations are

not equivalent. In order to prove it, we have to compute the characteristic polynomial and
show it depends on the chosen ground state as we checked explicitly in appendix C for
the four-generation cactus. It seems difficult to obtain general analytical expressions as in
appendix C for gp-generation cactus. Another less ambitious solution consists in analysing
how the oscillation matrices of two different equilibrium configurations are connected. This
is the subject of the next section.

C.3. Links between two different classical configurations

Consider one vectay in phase space. We wish to compare the Hamiltonian flow wfth
another one linked tq by a rotation arounek?. Furthermore, it provides us with a way of
connecting the matrices of small oscillations around two different classical ground states.
This is schematized in figure 6. We are to compar@ndé. In this sheme, we first begin

with a staten. The statey is deduced by a rotation arountdf of angled, therefore,

Y; = R(n?, 0)n; if j>i

C.16
Y =1n; elsewhere ( )
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We have to distinguish the casg¢s> i andj > i. We first examine the Hamiltonian flow
around this new equilibrium configuration. It defines a statas follows

Xj = —R@).0)[nI] A (Z Ui + %Zﬂp,) if j>i. (C.17)
keN;
Xj =—n) A ( > v+ %zjwj) elsewhere (C.18)
keN;

We have used (C.13) in order to establish these equations. We now apply the inverse
rotation R(n?, —0) (see figure 6). We also use the property discussed in appendix D:

R(n); —0)R(R(n), 0)[n]]; mR(n; 6) = R(n; ). (C.19)
In the limit » — 0, we deduce
R(n; —0){R(n), 0)[nf] A R(n), O)[u]} = nf A w. (C.20)

We have to distinguish four different cases.
e j > i andj has noti as a nearest neighbour. In this case

Vk € Nj, ¥ = R(n?, 0)n;.

Therefore,
§=-n)A < Z Nk + %Zﬂ?j) =§j. (C.21)
keN;
e j > i andj nearest neighbour af In this casey; = ;. Using (C.20), we show
§=n2n( 3wt K% om+ bon) c.22)
keN; ki
o j=1i
& =-ndn < Z Nk + Z R(nf; 9)771(%11‘771')- (C.23)
keN;—; k<i keNj_; k>i

Note that the notatio < i means thak is not a descendant of

e j #iandj < i. In this case, we trivially show thé;- =¢;.

We may also consider the case of the rotation of ths aroundn? for j > i, and
similar conclusions can be drawn.

Consequently, we can infer from this analysis that the problem of small oscillations
around a new configuration (deduced by an internal rotation aroundrtqopimeduces to
a problem of small oscillation in the initial configuration but with a modification of the
bounds between and its two immediate descendants (the new ‘interaction’) depends on
0. This modification seems to be the origin of the dependence of the low-energy spectrum
with the angled. Note that after this change of basis, the modification of the linearized
equation of motion due to a changedrs only local. This is why we do not expect a large
effective energy barrier between different coplanar ground states.
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